Integral Concurrent Learning: Adaptive Control with Parameter Convergence without PE or State Derivatives
نویسندگان
چکیده
Concurrent learning is a recently developed adaptive update scheme that can be used to guarantee parameter convergence without requiring persistent excitation. However, this technique requires knowledge of state derivatives, which are usually not directly sensed and therefore must be estimated. A novel integral concurrent learning method is developed in this paper that removes the need to estimate state derivatives while maintaining parameter convergence properties. A Monte Carlo simulation illustrates improved robustness to noise compared to the traditional derivative formulation.
منابع مشابه
Model reference composite learning control without persistency of excitation
Parameter convergence is desirable in adaptive control as it brings several attractive features, including accurate online modelling, exponential tracking, and robust adaptation without parameter drift. However, a strong persistent-excitation (PE) condition must be satisfied to guarantee parameter convergence in the conventional adaptive control. This study proposes a model reference composite ...
متن کاملMemory-Based Data-Driven MRAC Architecture Ensuring Parameter Convergence
Convergence of controller parameters in standard model reference adaptive control (MRAC) requires the system states to be persistently exciting (PE), a restrictive condition to be verified online. A recent data-driven approach, concurrent learning, uses information-rich past data concurrently with the standard parameter update laws to guarantee parameter convergence without the need of the PE c...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملComposite learning from adaptive backstepping neural network control
In existing neural network (NN) learning control methods, the trajectory of NN inputs must be recurrent to satisfy a stringent condition termed persistent excitation (PE) so that NN parameter convergence is obtainable. This paper focuses on command-filtered backstepping adaptive control for a class of strict-feedback nonlinear systems with functional uncertainties, where an NN composite learnin...
متن کاملAdvances in Parameter Estimation and Performance Improvement in Adaptive Control
In most adaptive control algorithms, parameter estimate errors are not guaranteed to converge to zero. This lack of convergence adversely affects the global performance of the algorithms. The effect is more pronounced in control problems where the desired reference setpoint or trajectory depends on the system's unknown parameters. This paper presents a parameter estimation routine that allows e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.03464 شماره
صفحات -
تاریخ انتشار 2015